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Abstract. We present a nonperturbative QCD calculation of elastic J/ψ meson production in photon-
proton scattering at high energies. Using light cone wave functions of the photon and vector mesons, and
the framework of the model of the stochastic QCD vacuum, we calculate the differential and integrated
elastic cross sections for γ p → J/ψ p. With an energy dependence following the two-pomeron model we
are able to give a consistent description of the integrated cross sections and the differential cross sections
at low |t| in the range from 20 GeV up to the highest HERA energies. We discuss different approaches to
introduce rescattering corrections and find no specific effects up to energies presently available. We also
calculate and compare to experiments the cross section for Υ photoproduction.

1 Introduction

Photoproduction of J/ψ mesons is at the borderline of soft
and hard physics. On one side the mass of the charmed
quark provides a relatively large scale, but on the other
hand the size of the J/ψ meson is determined not only by
the mass of the charmed quark but also by the confinement
mechanism which therefore cannot be neglected. Indeed
if confinement effects could be totally neglected the size
of the J/ψ would be of the order of the Coulomb radius
1/(mcαs) which is considerably larger than the Compton-
wave length 1/mc.

J/ψ photoproduction has been treated extensively
with methods of perturbative QCD [1–5]. In this paper we
present a nonperturbative approach. This has the disad-
vantage of stronger model dependence, but the advantage
that the process can be viewed from an unified point of
view together with other processes already studied, and
no use of external quantities like parton distributions is
needed. The only intervening quantities are inherently cal-
culated in the nonperturbative approach and no new free
parameters have to be introduced. By comparing the suc-
cesses and limitations of the perturbative and nonpertur-
bative approaches, important insight in the transition re-
gion between the two QCD regimes can be obtained.

The approach presented here is based on a functional
integral treatment of high energy scattering [6] where the
functional integrals are evaluated in an extension of the
stochastic vacuum model [7,8]. The method has been ap-
plied with great success to calculate differential and total
cross sections for many processes.

Although the size of the Υ is much smaller than that of
the J/ψ and hard contributions are expected to be dom-
inant, we nevertheless also calculate photoproduction of

the Υ -meson in our model, obtaining reasonable agree-
ment with experiment.

Our paper is organized as follows. In Sect. 2 we dis-
cuss shortly the main features of the underlying nonper-
turbative model and present the final formulae for dipole-
dipole scattering, which is the basic ingredient in our ap-
proach. We also give convenient parametrisations of our
theoretical results and discuss the inherent limitations of
the model. Our numerical results and a comparison with
experiment are given in Sect. 3. The paper closes with the
discussion in Sect. 4. In the Appendix we collect some use-
ful formulae concerning wave functions.

2 The model

2.1 Nonperturbative treatment
of scattering amplitudes

In this subsection we give a short review of the main ideas
behind our nonperturbative model for soft high energy re-
actions and present the final formulae. For more details
we refer to the original literature [6,9] and reviews [10–
12]. The functional integral approach to soft high energy
scattering [6] starts from the scattering of a highly ener-
getic quark in an external colour field Bµ(x). Along its
path Γ the quark picks up the non-Abelian phase

e−ig
∫

Γ
Bdx,

where the expression is path ordered. Here and in the fol-
lowing we express through bold face letters matrix valued
quantities like
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Fig. 1. The scattering of two dipoles

Bµ(x) =
8∑

C=1

1
2
λCB

C
µ (x), (2.1)

where λC represents the Gell-Mann matrices.
According to the functional integral approach to quan-

tisation the scattering amplitude of two quarks can be ob-
tained by averaging these phase factors of two quarks with
the exponential of the action as weight. Formally this can
written as the functional integral∫

DBe−ig
∫

Γ1
Bdx

e
−ig

∫
Γ2

Bdx exp[−iSQCD]

≡
〈
e

−ig
∫

Γ1
Bdx

e
−ig

∫
Γ2

Bdx
〉

B
. (2.2)

This quark-quark-scattering amplitude is neither observ-
able nor gauge invariant. In order to construct a gauge in-
variant expression we consider the scattering of two colour
neutral quark-antiquark states, so called colour dipoles.
This leads to the expectation value of two Wegner-Wilson
loops [9], as depicted in Fig. 1.

The four corners of the loops have the coordinates

C1 : (−T,−T, �x 1), (T, T, �x 1),

(−T,−T, �x′
1), (T, T, �x′

1) (2.3)
C2 : (−T, T, �x 2), (T,−T, �x 2),

(−T, T, �x′
2), (T,−T, �x′

2) (2.4)

where the arrow always indicates vectors in transverse
space and T goes to infinity.

The relative and centre coordinates are introduced as

�Ri = �x i − �x′
i; �Xi = �x′

i + zi
�Ri. (2.5)

The vector �Ri denotes the transverse extension of the
loop i and the quantity zi with 0 ≤ zi ≤ 1 will later
be identified with the longitudinal momentum fraction of
the quark. The impact parameter vector �b is defined by

�b = �X1 − �X2. (2.6)

With this definition the t-dependent scattering amplitude
can be obtained as the two-dimensional Fourier transform
with respect to the impact parameter [13].

The basic element of the scattering matrix for colour-
singlet quark-antiquark dipoles is the expectation value of
two loops,

S(�b, �R1, z1, �R2, z2)) =
1
9 〈W [C1]W [C2]〉

1
3 〈W [C1]〉 1

3 〈W [C2]〉
, (2.7)

with

W [Ci] = tr P exp
[
−ig

∮
Si

Bdx
]

(2.8)

where Si the border line of loop i.
We will discuss later how we pass from the dipole-

dipole amplitudes to hadronic scattering (or photopro-
duction) amplitudes by integrating over light-cone wave
functions.

The expectation value of the loops is approximately
calculated using an extension of the stochastic vacuum
model (SVM). In this model it is assumed that the long-
distance behaviour of QCD can be approximated by a
Gaussian stochastic process with the gluon field strength
as the stochastic variable. This model yields confinement
in non-Abelian gauge theories and is in conformity with
the Mandelstam-t’Hooft [14,15] picture of string forma-
tion through monopole condensation; we refer to [16] for a
detailed review. In order to apply the model for the evalu-
ation of two loops it has to be extended, since in a stochas-
tic process with non-commuting variables the higher cu-
mulants which must vanish in a Gaussian process are not
uniquely defined.

In order to pass from the gluon potential occuring in
the line integrals in (2.8) to the gluon field strength we
have to apply the non-Abelian Stokes theorem. This im-
plies a special choice of a surface containing both loops as
borders. This choice is not unique, and in this paper we
use one proposed in [9]; for other possible choices, see [17].

The general form of the basic correlator which deter-
mines the full Gaussian process is in our approach given
by [8]〈

: g2F a
µν(x)

(
e−ig

∫ x′
x

Adz
)bc

F d
ρσ(x′) :

〉
=

1
96δ

abδcd〈g2FF 〉B

∫
d4k

(2π)4
e−ik.(x−x′)

×
(

(gµρgνσ − gµσgνρ) κ iD̃(k2)

+ (−gνσkµkρ + gνρkµkσ − gµρkνkσ + gµσkνkρ)

× (1 − κ) i
dD̃1(k2)
dk2

)
. (2.9)

For the correlation functions we take the form proposed
in [9]

D̃(k2) =
27π4k2

4a2(k2 + 9π2

64a2 )4
,

D̃1(k2) =
9π4

2a2(k2 + 9π2

64a2 )3
, (2.10)

with the parameters
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a = 0.346 fm, 〈g2FF 〉a4 = 23.5, κ = 0.74, (2.11)

where a is the correlation length, which are in agreement
with lattice results [18,19]. This same parameter set has
been used for many applications of the model to hadron-
hadron, photon-hadron and photon-photon high energy
interactions and will be used throughout this paper.

The formalism set up above allows us to calculate the
scattering matrix in terms of the correlator (2.9) using the
assumptions of the stochastic-vacuum model. The most
straightforward way is to expand the exponentials occur-
ing in the Wegner-Wilson loops of (2.7). We then obtain

S(�b, 1, 2) = 1
144 tr(λaλb)tr(λcλd)

×
〈∫

S1

dσµνF a
µν

∫
S2

dσκλF c
κλ

∫
S1

dσµνF b
µν

∫
S2

dσκλF d
κλ

〉
B

+ . . . (2.12)

where the dots represent products of more than four field-
strength tensors and 1,2 stands for �R1, z1, �R2, z2. Inserting
the expressions (2.10) and performing the surface integrals
we are finally lead to

S(�b, 1, 2) = 1 − 1
9χ

2(�b, 1, 2), (2.13)

with

χ(�b, 1, 2) =
1
96

〈g2FF 〉
(
I(�x1, �x2) + I(�x′

1, �x
′
2)

− I(�x1, �x
′
2) − I(�x′

1, �x2)
)
. (2.14)

Using the special form of the correlators in (2.10) we ob-
tain

I(�x1, �x2)= 1
2πκ

∫ 1

0
dv
(
|v�x2 − �x1|2K2(λ−1|v�r2 − �x1|)

+ |�x2 − v�x1|2K2(λ−1|�x2 − v�x1|)
)

+(1 − κ)πλ2|�x2 − �x1|2K3(λ−1|�x2 − �x1|) (2.15)

where λ = (3π/8)a , and K2 and K3 are modified Bessel
functions.

A more refined method to treat the two traces has been
developed by Berger and Nachtmann [20]. The main idea
is to interpret the product of the two separate traces in
(2.12) over 3×3 matrices (generators of SU(3) in the fun-
damental representation) as one trace Tr2 in the product
space of the two fundamental representations of SU(3);
that is Tr2 acts in SU(3) ⊗ SU(3). Thus

S(�b, 1, 2)= 1
9Tr2

〈
exp

(
− ig

∫
S1
dσµνF a

µν( 1
2λ

a ⊗ 1)
)

× exp
(

− ig

∫
S2

dσµνF c
µν(1 ⊗ 1

2λ
c
))〉

B
. (2.16)

The two exponentials commute in the product space and
we can write the right-hand side of this equation as a single
exponential

S(�b, 1, 2) = 1
9 Tr2

〈
exp

(
− ig

∫
S dσ

µνFµν

)〉
B
, (2.17)

Fig. 2. Illustration of a) the expansion metod, b) the matrix-
cumulant method and c) the eikonal method. The gluon line
with a χ corresponds to the expression (2.14) and can be
viewed loosely as the exchange of a nonperturbative gluon

where the surface integral extends over the surfaces S1
and S2, and Fµν takes its values in the product algebra
of SU(3) ⊗ SU(3). We can now make a cluster expansion
with stochastic variables from the product algebra and
using the correlator (2.10) we finally obtain [20]

S(�b, 1, 2) = 2
3e

− 1
3 iχ + 1

3e
2
3 iχ, (2.18)

where χ = χ(�b, 1, 2) is the same as given in (2.14).
In the following we refer to the first method leading to

(2.13) as the expansion method, and the second method
leading to (2.18) as the matrix-cumulant method.

In a very loose sense we can consider the quantity χ as
representing the exchange of a nonperturbative gluon. In
this sense the expansion method takes only into account
the exchange of two nonperturbative gluons. The matrix
cumulant method then takes also into account multiple
gluon exchange; it will automatically satisfy unitarity con-
straints for hadronic cross sections. An expansion of (2.18)
in χ yields in leading order the result obtained in (2.13)
above, namely

S(�b, 1, 2) = 1 − 1
9χ

2 − . . . (2.19)

We also consider the eikonal unitarisation method

S(�b, 1, 2) = e−χ2/9, (2.20)

which is similar to forms used to study saturation effects
either through rescattering [4,21] or through direct sat-
uration of the qq̄-proton cross section [22,23]. Like the
matrix-cumulant method, it corresponds to multiple ex-
change, but here the exchanged objects represented by χ
are coupled in such a way that always a pair forms a color
singlet whereas in the matrix-cumulant method only the
entirety of the exchanged objects has to form a colour sin-
glet. The three different methods are illustrated in Fig. 2.

The matrix element for dipole-dipole scattering with
momentum transfer �q is then given by

Tfi(s, t, �R1, z1, �R2, z2) =

−2is
∫
d2b ei�q.�b

(
S(�b, 1, 2) − 1

)
, (2.21)

with t = −�q2.
The treatment of three quarks in a colour-singlet state

is analogous to the scattering of two dipoles, but techni-
cally more involved. We refer to the literature [9,20] for
the corresponding results.
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If the parameters of the stochastic-vacuum model are
taken to be independent of the energy, the resulting cross
sections turn out to be independent of the scattering en-
ergy too. The observed energy dependence has therefore to
be introduced by hand. One way is to make the size of the
hadrons energy dependent [9,24]. This has been shown to
be very simple and effective for purely hadronic processes.
We here adopt the two-Pomeron approach of Donnachie
and Landshoff [25], coupling a soft Pomeron with inter-
cept 1.08 to large and a hard Pomeron with intercept 1.42
to small dipoles [26,27].

Specifically we introduce an energy dependence of the
quantity χ, (2.14)

χ(b, 1, 2) → χE(b, 1, 2, s)

= χ(b, 1, 2)

(
s

s0

)εs/2

for R1 and R2 > rc

χ(b, 1, 2) → χE(b, 1, 2, s)

= χ(b, 1, 2)

(
sR2

i

s0r2c

)εh/2

for Ri ≤ rc, i = 1 or 2

χ(b, 1, 2) → χE(b, 1, 2, s) (2.22)

= χ(b, 1, 2)

(
sR1R2

s0r2c

)εh/2

for R1 and R2 ≤ rc

with εs = 0.08, εh = 0.42 taken from [25] and rc=0.22 fm
taken from a treatment of the proton structure function
[27].

2.2 Wave functions and hadronic reactions

We are interested in reaction amplitudes where the exter-
nal particles are physical hadrons and photons. We obtain
such amplitudes from the dipole-dipole scattering ampli-
tude (2.21) by integrating over all dipoles sizes with the
light-cone wave functions of the participating particles as
weights.

A meson or a photon is here described by a light-
cone wave function ψn(�Ri, zi) of a quark and an anti-
quark with relative transverse coordinates �Ri and quark
longitudinal momentum fraction zi. The meson or pho-
ton scattering amplitude for the reaction a b → c d is
then obtained from the dipole-dipole scattering amplitude
Tfi(s, t, �R1, z1, �R2, z2) of (2.21) by

Tab→cd(s, t) = −2is
∫
d2�b ei�p.�b

(
Sab→cd(�b, s) − 1

)
, (2.23)

where

Sab→cd(�b, s) =
∫
d2R1

∫
d2R2

∫ 1

0
dz1

∫ 1

0
dz2 ψ

∗
c (�R1, z1)

×ψa(�R1, z1)ψ∗
d(�R2, z2)ψb(�R2, z2)S(�b, 1, 2). (2.24)

The normalization is such that
dσ

d|t| =
1

16π s2
|Tab→cd(s, t)|2. (2.25)

For the heavy quark content of a photon the perturba-
tive expressions for the wave functions are reliable since
the charm quark mass sets the scale. Although we need in
the present work only with the transverse wave function,
we give for completeness the expressions for both trans-
verse and longitudinal photons, the latter being needed
for electroproduction of mesons. For photons of helicities
1, -1 and 0, we write respectively

ψγ,1(Q2; z, r, θ) =

êf

√
6α

2π

[
iεeiθ(zδh,+δh̄,− − z̄δh,−δh̄,+)K1(εr)

+mfδh,+δh̄,+K0(εr)
]
, (2.26)

ψγ,−1(Q2; z, r, θ) =

êf

√
6α

2π

[
iεe−iθ(z̄δh,+δh̄,− − zδh,−δh̄,+)K1(εr)

+mfδh,−δh̄,−K0(εr)
]

(2.27)

and

ψγ,0(Q2; z, r) = êq

√
3α

2π
(−2zz̄) δh,−h̄ Q K0(εr), (2.28)

where
ε =

√
zz̄Q2 +m2

f , (2.29)

and mf is the quark mass and êf is the quark charge in
units of the elementary charge for each flavour f ; K0, K1
are the modified Bessel functions.

Meson wave functions are more model dependent than
photon wave functions and especially the spin structure
can be quite complicated [28]. In this paper we take for the
vector mesons the spin structure from the vector current
leading to similar expressions as for the photon see e.g. [13,
29,23].

ψV,+1(z, r) =
(

− ieiθ∂r(zδh,+δh̄,− − z̄δh,−δh̄,+)

+mfδh,+δh̄,+

)
φV (z, r),

ψV,−1(z, r) =
(

− ie−iθ∂r(z̄δh,+δh̄,− − zδh,−δh̄,+)

+mfδh,−δh̄,−
)
φV (z, r) (2.30)

and
ψV,0(z, r) = φV (z, r)

(
ω4zz̄δh,−h̄

)
. (2.31)

Here ±1 and 0 denote transverse and longitudinal polar-
izations of the vector meson, and h and h̄ represent the
helicities of quark and antiquark respectively.

The functions φV (z, r) are constrained by the normal-
isation condition and by the electromagnetic decay width,
as described in the Appendix. Making for the r depen-
dence a Gaussian ansatz, the parameters are then com-
pletely determined by the two conditions just mentioned.
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For the z dependence we make two ansätze: one is sug-
gested by the phenomenologically very successful Bauer-
Stech-Wirbel model [30]

φBSW(z, r) =
N√
4π

√
z(1 − z)

× exp

[
−M2

V

2ω2

(
z − 1

2

)2
]

× exp
[
−1

2
ω2r2

]
. (2.32)

The other choice is obtained in the spirit of Brodsky-
Lepage [31] from a non-relativistic wave function in the
rest frame where the transition to the light-cone coordi-
nates is achieved by the replacement of the relative mo-
mentum �k of the two constituents by the transverse mo-
mentum �kT and the longitudinal momentum fraction of
the quark according to

k2 → k2
T +m2

f

4z(1 − z)
−m2

f . (2.33)

This procedure only makes sense for a finite quark mass
and leads to a more photon-like z dependence of the wave
function. We then write

φBL(z, r) =
N√
4π

exp
[

− m2
f (z − 1

2 )2

2ω2z(1 − z)

]
× exp[−2z(1 − z)ω2r2]. (2.34)

MV and mf represent respectively the vector meson mass
and the the quark mass.

For the proton we should use a three quark wave func-
tion which in principle poses no problems [9]. Earlier inves-
tigations have shown however that a quark-diquark struc-
ture of the proton leads to phenomenologically consistent
results and most applications have been made in this pic-
ture. The quark-diquark nucleon wave function can be
treated like a quark-antiquark meson wave function and
again we make a Gaussian ansatz for the wave function
and fix the longitudinal momentum fraction at z ≈ 1/2,
namely

ψp(R) =
1
2π

1
Sp

exp[−r2/(2Sp)2]. (2.35)

The transverse size parameter Sp of the proton is choosen
to be

Sp = 0.74 fm, (2.36)

which leads to a good description of pp scattering and also
to a good proton form factor [32].

For the charm mass we adopt the value used in a pre-
vious analysis of structure functions [27],

mc = 1.25 GeV. (2.37)

This value lies in the middle of the range of masses of
the modified minimal subtraction scheme [33]. The depen-
dence on the charm mass is discussed in the Appendix.

This finishes the description of the general model, with
characterization of all parameters. It should be noted that
in the original application of the matrix cumulant method
[20] a slightly different set of parameters was used in or-
der to get an optimal overall description of the elastic
proton-proton cross section. Showing in the present paper
the values of amplitudes and cross sections evaluated with
only one set of parameters we wish to emphasize the mag-
nitude of the influence of multiple scattering mechanisms.

2.3 Photoproduction of vector mesons

Using the results of the two previous sub-sections we can
calculate the scattering amplitudes for photoproduction
of vector mesons.

Inserting the wave functions of (2.27),(2.30) and (2.35)
into the production amplitude (2.24) we obtain

Sγp→V p(b) =
∫
d2R1

∫
dz1

∫
d2R2 ργ,V,λ(z1, R1)

×|ψp(R2)|2S(b, z1, �R1, 1/2, �R2), (2.38)

where ργ,V,λ(z1, R1) is the photon-vector-meson overlap
function

ργ,V,λ(z1, R1) = êq

√
6α

2π
φBSW/BL(z,R1)

×
(
ε ω2R1

[
z2 + (1 − z)2

]
K1(mf R1)

+m2
fK0(mf R1)

)
. (2.39)

The overlap densities are independent of the angles θ1
and θ2 of �R1 and �R2, and the functions χ(�b, 1, 2) change
sign if �R1 or �R2 is reversed, as can be seen easily from
(2.14) by noting that �Ri → −�Ri corresponds to (�xi, �x

′
i) →

(�x′
i, �xi). Inserting the result (2.18) of the matrix cumulant

method into (2.38) we see that after integration over the
angles θ1 and θ2 only the even terms in χ survive and the
exponentials in (2.18) can be replaced by cosines. There-
fore we may insert in (2.38), as result of the matrix cumu-
lant method,

S(�b, 1, 2) = 2
3 cos

(
1
3χ
)

+ 1
3 cos

(
2
3χ
)

≡ 1 +
2
3

[
cos
(1

3
χ
)

+ 2
][

cos
(1

3
χ
)

− 1
]

(2.40)

This form guarantees that the amplitude remains in-
side the unitarity bounds if χ becomes large. Differences
with respect to the expansion method, (2.13), increase at
high energies.

If the energy dependent expressions in (2.22) are in-
troduced it turns out that the hard part of the proton,
R1 ≤ rc gives for energies below the TeV region only a
negligible contribution, so we have only to consider the
two cases R1 ≤ rc and R1 > rc.

Now all formulae are set up and all parameters are
fixed.
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Fig. 3. t-dependence of soft and hard production ampli-
tudes at the energy W =

√
s = 20 GeV. The lines can be

parametrised in forms A(0) exp(−a|t|)/(1 + b|t|), as explained
in the text. The solid and the dashed lines are the results for
the expansion method (2.13), using respectively BSW and BL
wave functions for J/ψ. The dotted line corresponds to the
matrix-cumulant method (2.40) and the dot-dashed line to the
eikonal method (2.20), both using BSW wave function

Our results for the differential and total cross section of
J/ψ photoproduction in the expansion method are written

dσ

d|t| =
(
Ah(t)

( s
s0

)0.42
+As(t)

( s
s0

)0.08
)2

. (2.41)

The theoretical results for the soft and hard amplitudes
in the case of the BSW wave function can be conveniently
expressed by the parametrisations

As(t) =
10.90 exp(−1.07|t|)

1 + 3.43|t| ,

Ah(t) =
2.05 exp(−0.93|t|)

1 + 3.54|t| , (BSW ), (2.42)

where t is in GeV2 and As,h(t) in
√

nb/GeV, s0 =
(20 GeV)2. For the case of the BL wave function the forms
are very similar

As(t) =
10.77 exp(−1.04|t|)

1 + 3.29|t| ,

Ah(t) =
2.09 exp(−0.95|t|)

1 + 3.29|t| , (BL). (2.43)

These very convenient parametrisations reproduce the
results of our model calculation with an accuracy always
better than 5 percent. We see that the t-dependence of
the differential cross section predicted by our model is not

Table 1. Result for A in the parametrisation (2.44) of our
theoretical results for the expansion, the matrix-cumulant and
the eikonal methods

expansion matrix-cum. eikonal

W A A A
GeV nb/GeV2 nb/GeV2 nb/GeV2

20 167.6 153.7 141.1
200 896.4 790.2 693.3
1000 5657 3983 3008

a pure exponential, showing a curvature in a logarithimic
scale. Since the parameters expressing the t-dependences
of the hard and soft parts of the amplitude have rather
similar values, the shape of the angular distribution (and
the slope parameter) depend only weakly on the energy
(we recall that we work with small values of |t|). The values
of As(t) and Ah(t) are shown in Fig. 3, in solid line for
the BWS and in dashed line for the BL wave function.
These forms, together with (2.41) contain all results for
the expansion method that will be used for comparison
with experiments. At low energies the soft contribution is
several times stronger than the hard one. The hard part
reaches the soft part for W about 240 GeV.

Since the differences between the two kinds of J/ψ
wave functions are very small, from now on in the present
paper, we will use only one of them, namely the BSW
wave function.

The results for the matrix cumulant method [20] can-
not be parametrized so easily, due to the nonlinear de-
pendence of the amplitudes on the quantity χE(b, 1, 2, s),
(2.22). That is, we cannot factorize the s and t depen-
dences of the soft and hard parts, as in (2.41). The same
is true of the amplitudes obtained with the eikonal form
of (2.20). In Fig. 3 we draw also the amplitudes for these
two unitarization procedures, for a fixed energy W = 20
GeV, where we see that the form of the t-dependence (in a
limited |t| interval) is not much affected by the saturation
corrections. The same is true for higher energies.

Accurate parametrisations of the theoretical results for
differential cross sections can be written in the form

dσ

d|t| =
A exp(−a|t|)

1 + b|t| , (2.44)

yielding results summarised in Tables 1, 2. We have found
that parametric forms with dipole factor like 1/(1 + b|t|)2
do not lead to equally accurate representations for dσ/d|t|.

For the integrated production cross section we obtain
with the expansion procedure
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Table 2. Results for a and b in the parametrisation (2.44) of
our theoretical results for the expansion, the matrix-cumulant
and the eikonal methods at different energies

expansion matrix-cumulant eikonal

W a b a b a b
GeV GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2

20 2.72 9.0 2.83 10 3.00 10
200 2.62 9.2 2.87 10 3.15 10
1000 2.56 9.3 3.38 10 3.78 10

σ = 0.607
( s
s0

)0.84
+ 16.415

( s
s0

)0.16

+6.310
( s
s0

)0.50
. (2.45)

In the upper part of Fig. 4 we show the results for the
integrated cross sections using the same input-parameter
set of (2.11) and (2.36) for the expansion method of (2.13)
and for the matrix cumulant expression of (2.40) and for
the eikonal form of (2.20). The curves show the influence of
possible multiple scattering corrections. In the lower part
of Fig. 4 we instead choose slightly different values for the
gluon condensate: 〈g2FF 〉a4 = 25.0 and 26.0 respectively
for (2.40) and (2.20). This last figure shows that in the
present experimental range, below 300 GeV, rescattering
corrections hardly change energy dependence of the cross
section but only lead to a small rescaling. The rescaling
factor is easily compensated by slight changes of one sin-
gle external parameter. Small changes in the value of the
charm quark mass that enters in the wave function have
important effects of the same kind.

We may conclude that the rescattering effects are not
clearly observed and will be very hard to observe in elastic
photoproduction of J/ψ for energies up to 300 GeV.

It is interesting to investigate the behaviour of the in-
tegrated cross section at higher energies. While with the
expansion method the cross section increase according to
(2.45), in the unitarized cases the behaviour in the whole
range 20 ≤ W ≤ 1000 GeV is described by the slower
behaviour

σ(W ) = σ(W0) ×
[
1 + C

(W
W0

)δ

log
(W
W0

)]
, (2.46)

with δ = 0.7 for the matrix cumulant (dotted lines) cases
and = 0.6 for the exponentiation procedure (dot-dashed
lines). The values of the multiplicative constant C vary a
little with the choice of 〈g2FF 〉a4 = as follows: C=0.36
and 0.35 in the matrix cumulant method respectively for
23.5 and 25.0, and C=0.43 and 0.41 in the exponentia-
tion procedure respectively for gluon condensates 23.5 and
26.0.

If we restrict ourselves to the experimental energy
range from 20 to 300 GeV, the results obtained with the
expansion method can be represented with an effective

Fig. 4. Integrated elastic production γ p → J/ψ p cross sec-
tion. In full line the result with the expansion method, (2.13).
Dotted and dash-dotted lines correspond respectively to the
matrix cumulant method of (2.40) and to the exponentiation
form of (2.20). In the upper figure the same 〈g2FF 〉a4 = 23.5
for the gluon condensate is used for the three curves. In the
lower figure we show that the unitarization effects are com-
pensated, in the present experimental range

√
s ≤ 300 GeV,

by slight changes of parameters: 〈g2FF 〉a4 = 25.0 and 26.0 re-
spectively for (2.40) and (2.20). The behaviour at high energies
is explained in the text

power like form

σ(W ) = 14.6 + 9.37
(W
W0

)1.08
. (2.47)
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The functional integrals occuring in the basic expres-
sion (2.7) for the S-matrix are in our approach approxi-
mately evaluated with the help of the stochastic vacuum
model. This model is an approximation appropriate only
for the soft part of QCD. The higher the momentum trans-
fer the more important will become contributions of hard
gluons. Therefore we expect our calculations to be best
at small momentum transfer. Of course we cannot predict
the exact scale where hard scattering becomes important
but investigations of the gluon distributions in hadrons
and virtual photons [34] indicate that the hard compo-
nent becomes as important as the soft part at a trans-
verse momentum of the gluons |kT | ≈ 1 GeV, so that a
safe limit for soft process is

√|t| 	 1 GeV. We also expect
that for photoproduction of Υ -mesons even at small mo-
mentum transfer hard gluons play a more important role.
There the small size of the Υ suppresses the contribution
of the soft (nonperturbative) gluons as compared to the
hard ones.

Another limitation of our approach is given by the
WKB approximation underlying the nonperturbative ap-
proach [6] to scattering. Here the path is assumed to be
the classical one, being nearly a straight line. This also de-
termines the momentum transfer below which the model
can be safely applied. The WKB approximation should be
more reliable at high energies, and this restricts the ap-
plication of the model to energies higher than

√
s ≈ 20

GeV.
Apart from the approximations characteristic of the

stochastic vacuum model, also the wave functions are
treated in a very simplified form. From previous expe-
rience we expect the reliabillity of the model to be about
10% in the amplitudes. Thus, putting all this together,
discrepancies between theory and experiment below 20%
for the production cross sections could be considered as
natural.

3 Comparison with experiment

The experimental [35] forward production cross section(
dσ/dt

)
(t = 0) is shown in Fig. 5. Only the H1 Collabora-

tion measures directly this quantity, represented by their
0 ≤ |t| ≤ 0.053 GeV2 bin. The values reported by Zeus
[36] correspond to the extrapolations to |t| = 0 of their
fitted straight lines, as will be discussed later (Fig. 8).

A direct comparison with both ZEUS and H1 data in
the forward direction can be made at |t| = 0.1 GeV2, and
this is presented in Fig. 6. Here we see a very satisfactory
agreement between theory and ZEUS and H1 data, with
a remarkable theoretical description of the energy depen-
dence in the whole range from 40 to 260 GeV.

The integrated production cross section is presented
in Fig. 7, showing again a reasonable agreement of our
model with all data up to nearly 300 GeV. The solid line
corresponds to our calculation using the χ2 expansion of
(2.13). As we have already shown in Fig. 4, the effects of
saturation introduced by the matrix cumulant or exponen-
tiation method are not very large, are within our expected

Fig. 5. Forward differential cross section
(
dσ/dt

)
(t = 0) for

the reaction γ p → J/ψ p. The line represents our results
with the expansion method. The experimental results are from
the H1 Collaboration [35] for the momentum transfer in the
interval 0 ≤ |t| = 0.053 GeV2

Fig. 6. Differential cross section
(
dσ/dt

)
(|t| = 0.1) for the

elastic production γ p → J/ψ p at |t| = 0.1 GeV2. The solid
line represents our calculation with the expansion method. The
experimental results are from ZEUS [36] and H1 [35] collabo-
rations. Zeus data are separately reported for observations of
J/ψ → µ+µ− and J/ψ → e+e− decays

errors, and can be compensated by slight change in exter-
nal parameters. In the figure the dashed line represents
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Fig. 7. Integrated cross section for the reaction γ p → J/ψ p.
The experimental data are from the H1 [35] and Zeus [36] col-
laborations. The point marked with a star at W = 16.8 GeV
represents results from fixed target experiments [38–40]. The
solid line is obtained with the expansion method. The dashed
line shows our results using the matrix cumulant method, with
the same set of parameters, as in the top part of Fig. 4. To
show the influence of a different choice for the charm mass, the
dot-dashed line gives the results obtained with the expansion
method, using mc = 1.2 GeV

the results obtained with the matrix cumulant, using the
standard set of parameters. We have shown in Fig. 4 that
choosing 〈g2FF 〉a4 = 25.0, instead of 23.5, the result of
the matrix-cumulant coincides in this energy range nearly
with the solid line in Fig. 7. To show the influence of the
value of the charm mass in the calculation, this figure in-
cludes also (dot-dashed line) the results obtained using a
value mc = 1.2 GeV in the wave functions.

The H1 and ZEUS data on integrated elastic cross sec-
tions put together can be fitted by either of the two forms
(in nb)

σ(W ) = 25.8
(W
W0

)0.71
, (3.1)

or

σ(W ) = 26.0 + 17.14
(W
W0

)0.43
log
(W
W0

)
, (3.2)

with the same deviation χ2 = 1.73 per degree of freedom.
In Fig. 8 we compare our calculations of differential

cross sections with the most recent data from H1 and
ZEUS experiments. The energy range is from 40 to
260 GeV, distributed in 9 bins, and the |t| range is
(0− 1.6) GeV2. Where data from different experiments in
similar energy bins are available, we plot them together in
the same figure. We emphasize that our calculation con-
tains no adjustable parameters and that these measure-
ments cover a wide energy range.

As a quite general feature we see that for small values
of the momentum transfer t the agreement between ex-
periment and theory is quite satifactory for all energies.
For larger values of |t| agreement with H1 data is still sat-
isfactory, but at the lower and middle energies our results
are in general below the new ZEUS data. At the highest
energies, the agreement improves. Since in our model we
take into account only nonperturbative effects it is not sur-
prising that at larger momentum transfers where harder
gluons are exchanged, some contributions are missing in
our calculation. In [37] a good fit up to |t| ≈ 6 GeV2 is
indeed obtained.

Zeus gives exponential fits in t to their data, which
are indicated by dotted lines in our plots in Fig. 8. From
these fits the Zeus collaboration obtains the forward dif-
ferential cross section and then evaluates the integrated
elastic cross section. The plots show remarkable differ-
ences at |t| = 0 between our results (with the expansion
method) and the ZEUS extrapolated values obtained with
a straight line.

As we have shown in the general description of the
calculation, the differences between the expansion method
and the matrix cumulant and exponentiation methods are
not very large and could be absorbed using a slightly dif-
ferent choice of parameters. We do not include the corre-
sponding lines in Fig. 8 in order not to overload the plots.

The data presented above are the most recent HERA
data on J/ψ photoproduction. Some of the pioneering
fixed target experiments of 20 years ago were made at
energies near

√
s = 20 GeV, which is at the border of the

range appropriate for our calculations. We have included
in Fig. 7 a point at about 16.8 GeV representing this ex-
perimental effort [38–40], showing that it fits well in the
sequence of higher energy data points. As a historical trib-
ute, we show in Fig. 9 the |t|-dependence of the differential
cross sections obtained in some of these experiments. In
this figure we draw together our curves for the expansion
method of (2.13) (solid line), for the matrix cumulant re-
sult of Berger and Nachtmann [20] given by (2.40) and for
the exponentiation procedure of (2.20).

We have also applied the model to photoproduction
of Υ (1S) mesons. As expected the results of our calcula-
tion are below the central values of the experimental data
from Zeus [41] and H1 [35], but the large errors do not
allow a definite conclusion about the need of other contri-
butions. We find it nevertheless quite astonishing that the
nonperturbative model seems to yield at least a substan-
tial fraction of the cross section for such a hard process.
Our results shown in Fig. 10 can be compared with pertur-
bative calculations [42], [43] of the same process. In [42]
the LO calculation taking into account the skewed par-
ton distribution in some way obtains results on the lower
edge of the error bars, while in [43] additional contribu-
tions lead to values just through the central values of the
measurements.



54 H.G. Dosch, E. Ferreira: Nonperturbative QCD treatment of J/Ψ photoproduction

Fig. 8. t-dependence of differential cross sections for the reaction γ p → J/ψ p. Data are from H1 [35] and ZEUS [36]
experiments. The solid curves represent our calculations, as described in the text. The dashed straight lines are Zeus fits in each
of their energy bins
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Fig. 9. t-dependence of differential cross sections for the re-
action γ p → J/ψ p at the low energies of some fixed target
experiments [38–40]. The solid, dashed and dotted lines repre-
sent our results using (2.13), (2.40) and (2.20) respectively

Fig. 10. Integrated cross section for the reaction γ p → Υ p.
Solid, our result with mb = 4.2 GeV, dashed with mb = 4.4
GeV. Experimental points from Zeus [41] and H1 [35]

4 Summary and discussion

The main purpose of this paper is to investigate to what
extent photoproduction of J/ψ(1S) mesons can be de-
scribed in a purely nonperturbative QCD model. The
model has been tested before, and the parameters used
in the present work have all been taken from previous

publications on different processes. They were determined
mainly from results of QCD lattice calculations and
hadronic properties. Our results which thus do not contain
any free parameters are compared with the more recent
experimental data obtained at HERA by the H1 [35] and
Zeus [36] collaborations. Comparison of the calculated val-
ues of the differential cross sections with the data in nearly
forward directions is presented in Figs. 5 and 6. The values
reported by Zeus at |t| = 0 are not direct measurements,
but rather extrapoled values from linear fits, as shown in
Fig. 8. In our view, these linear extrapolations do not ac-
count for possible structure in the very forward direction,
and may lead to underestimated values, so that Fig. 5 only
shows the H1 data. At |t| = 0.1 GeV2 both H1 and Zeus
direct measurements exist, and Fig. 6 shows that the theo-
retical model gives excellent description of the magnitude
and of the energy dependence at low |t|.

Figure 8 shows that at larger |t| our calculations agree
well with the H1 measurements and are below the Zeus
points for energies up to W = 120 GeV. At the high-
est energies the agreement with Zeus data is good, ex-
cept that our model predicts a curvature, with a rise in
the very forward direction. A clarification of this point is
very important, since many models can only calculate the
forward scattering amplitude and the test of the corre-
sponding theoretical ideas depend on this kind of exper-
imental data. Our model leads to a peculiar form-factor
dependence which is exhibited in Fig. 3 and represented by
the parametrizations of (2.41), (2.42) and (2.43). The t-
dependence of the differential cross sections shows similar
curvatures, represented by (2.44).

We recall that our model is meant to be tested in the
low |t| range, say below 1.0 GeV2. For larger momentum
transfers the differential cross section values are already
100 times smaller than in the soft region, and an addi-
tional genuinely hard contribution, however small (with-
out influence on the integrated cross section), may play
here an important role.

The integrated cross section is in reasonable agreement
with the experimental data, as shown in Fig. 7.

We have studied particularly the influence of rescat-
tering. We have several methods based on the stochastic
vacuum model to evaluate our model.

– The expansion method which corresponds loosely
speaking to an exchange of two,,nonperturbative” glu-
ons.

– The matrix cumulant method [20] which takes in some
way multigluon exchange into account and respects the
unitarity constraints for hadronic cross sections.

– The usual exponentiation of the profile function, as in
(2.20).

The methods are illustrated in Fig. 2 and compared in
Figs. 3 and 4.

The energy dependence was introduced based on the
two-pomeron model of Donnachie and Landshoff [25]. In
the expansion method it leads to a power like increase
of the integrated cross section. The energy dependence
is of course the same as the one obtained in the Regge
fit [44], but whereas there the Regge residues were fitted
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to the experimental data here we have calculated these
residues, including their t−dependence, in a nonpertur-
bative model. In [44] it was stated explicitely that the
relatively strong coupling of the soft pomeron to γ − J/ψ
cannot be understood, given the weak coupling to γ∗cc̄ ob-
served in the charm structure function. In our approach
this is a result of the model. In the matrix cumulant and
in the exponentiation methods there is saturation in the
sense of a deviation from the pure Regge pole behaviour
due to the unitarity constraints on the dipole cross sec-
tions, inherently respected by the approach. Up to energies
about 1000 GeV, the energy dependence in these unitarity
controlled calculations is very well parametrized in forms
given by (2.46). In Fig. 7 our calculations are compared
with the data.

It should be noted that in photoproduction processes
the Froissart theorem cannot be proved and that a pow-
erlike increase does not contradict fundamental theorems
of local quantum field theory.

At present energies and with present accuracies the
data show no indication of saturation and are well compat-
ible with the powerlike behaviour of the unconstrained two
pomeron approach. But a comparison with calculations
that include rescattering effects in our approach shows
that these are also compatible with the experiment, con-
sidered some 20 % allowed variation in our model. Rather
small changes of parameter values may account for differ-
ences among calculation procedures.

We have also tested two different types of wave func-
tions and found only small differences in relevant results.
This is in agreement with other investigations including
rescattering effects [4] or saturation of the dipole cross
section [23] which give a good fit to the forward produc-
tion amplitudes

We conclude that, in the energy range available at
HERA, all the methods studied here yield results compat-
ible with experiment. As can be seen from Fig. 4, sizeable
rescattering effects are only expected for energies above
300 GeV.

In our model the residues of both soft and hard
pomerons are evaluated by nonperturbative methods but
this seems to agree fairly well with the phenomenologi-
cal value. This has already been noted in [45] for a large
number of total cross sections and forward amplitudes.

We have extended the use of our model to photopro-
duction of Υ (1S) mesons and found that it can yield at
least a sizeable part of this supposedly hard process.
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many), CNPq (Brazil) and FAPERJ (Brazil) for support of
the scientific collaboration program between Heidelberg and
Rio de Janeiro groups working on hadronic physics. The au-
thors are very grateful to Uri Maor for discussions and joint
efforts for the treatment of J/ψ photoproduction.

A Conditions on wave functions

The two parameters in the wave functions of the vector
mesons, N ans ω, are determined by the normalisation
condition and the leptonic decay width.

The square of the wave functions (2.30,2.31) summed
over internal helicities is given in the transverse case by

|ψBSW,±1(z, r)|2 = |φBSW (z, r)|2 (A.1)

×
[
ω4r2

[
z2 + (1 − z)2

]
+m2

f

]
for the BSW wave function [30], and

|ψBL,±1(z, r)|2 = |φBL(z, r)|2 ×
[
ω4r2

[
z2 + (1 − z)2

]
×[4z(1 − z)

]2 +m2
f

]
(A.2)

for the BL wave function [31]. In the longitudinal case we
can write jointly

|ψX,0(z, r)|2 = 2 |φX(z, r)|2 × [ω4z(1 − z)
]2
, (A.3)

where X in the index stands for BSW or BL -type wave
functions. These forms have to fulfil the normalisation con-
dition ∫ 1

0
dz

∫
|ψX,λ(z, r)|2d2r = 1. (A.4)

The condition which relates the wave function with the
e.m. decay width fV is, in the transverse cases,

fV = êV

√
6

MV

√
4π

16π3

∫ 1

0
dz

∫
d2k

1
z(1 − z)

×
([
z2 + (1 − z)2

]
k2 +m2

f

)
φ̃BSW (z, k) (A.5)

and

fV = êV

√
6

MV

√
4π

16π3

∫ 1

0
dz

∫
d2k

1
z(1 − z)

(A.6)

×
([
z2 + (1 − z)2

]
4z(1 − z) k2 +m2

f

)
φ̃BL(z, k)

for the BSW and BL wave functions respectively. In the
longitudinal cases we can write in a single form

fV = êV ω
√

3
√

4π
16π3

∫ 1

0
dz

∫
d2k 16 z(1 − z)

×φ̃X(z, k). (A.7)

In these expressions φ̃X(z, k) is the Fourier transform of
φX(z, r), defined through

φX(z, r) =
∫
d2k
4π2 φ̃X(z, k) exp[−ik · r], (A.8)

and êV is the quark charge in the meson, in units of the
elementary charge, that is êV = 2/3 for the J/ψ and 1/3
for the Υ .
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Table 3. Values of ω, N and size parameter S for transverse
wave functions of J/ψ and Υ mesons

BSW BL
Meson mf ω N S ω N S

[GeV] [GeV] [fm] [GeV] [fm]

J/ψ(1S) 1.2 0.59 3.30 0.35 0.64 1.50 0.35
1.25 0.58 3.17 0.36 0.63 1.46 0.35
1.3 0.57 3.04 0.36 0.63 1.43 0.35

Υ (1S) 4.2 1.29 2.48 0.16 1.33 1.18 0.16
4.4 1.26 2.35 0.16 1.31 1.15 0.16

Table 4. Values of the integrated square radius over the over-
lap functions, defined by (A.13), for the two kinds of transverse
wave function

BSW BL
Meson mf C(λ = ±1) C(λ = ±1)

[GeV] [GeV−2] [GeV−2]

J/ψ(1S) 1.2 0.0103 0.0110
1.25 0.0095 0.0099
1.3 0.0088 0.0091

Υ (1S) 4.2 −0.00034 −0.00035
4.4 −0.00030 −0.00031

The decay constant fV is related to the e.m. decay
width Γe+e− through

f2
V =

3MV Γe+e−

4πα2 . (A.9)

In Table 3 we give the values of N, ω and the mean
square transverse radius for the J/ψ and the Υ wave func-
tions for different choices of the charm and bottom masses
for the transverse BSW- and BL-type meson wave func-
tions.

The γ∗-vector meson overlap functions, necessary for
the calculation of photo- and electroproduction of vector
mesons are obtained from (2.30,2.31) and (2.27, 2.28), and
are given by

a1) transverse, BSW wave function

ργ∗V,1(z, r) = êV

√
6α

2π
φBSW (z, r)

×
(
ε ω2r

[
z2 + (1 − z)2

]
K1(ε r) +m2

fK0(ε r)
)

= êV ρ̂γV,1(z, r) (A.10)

a2) transverse, BL wave function

ργ∗V,1(z, r) = êV

√
6α

2π
φBL(z, r)

×
(
ε ω2r

[
z2 + (1 − z)2

]
4z(1 − z) K1(ε r)

+m2
fK0(ε r)

)
= êV ρ̂γV,1(z, r) (A.11)

b)longitudinal, both kinds of wave function

ργ∗V,0(z, r) = −16êV

√
3α

2π
ω φX(z, r)z2(1 − z)2QK0(ε r)

= êV ρ̂γV,0(z, r), (A.12)

where ε =
√
z(1 − z)Q2 +m2

f .
The real photon-vector meson overlap is obtained by

setting Q = 0, i.e. the longitudinal part vanishes and ε →
mf .

The integrals of the square radius over the overlap
functions

C(λ) =
∫ 1

0
dz

∫
d2r r2 ργV,λ(z, r) (A.13)

give an estimate of the effective strength for the produc-
tion process, the square of these quantities being nearly
proportional to the integrated cross sections. Thus the
numbers in Table 4 tell us that the ratio between Υ and
J/ψ production cross sections at 20 GeV is about 10−3.
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